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Abstract. Let G be a finite group and let π be a set of primes. Write Irrπ1pGq for the
set of irreducible characters of degree not divisible by any prime in π. We show that if
π contains at most two prime numbers and the only element in Irrπ1pGq is the principal
character, then G “ 1.

Introduction

Let G be a finite group and let π be a set of primes. Write Irrπ1pGq for the set of
irreducible characters of degree not divisible by any prime in π. If π “ tpu, then we use
the standard notation Irrp1pGq “ Irrπ1pGq. The condition Irrp1pGq “ t1Gu implies that
G “ 1 in an elementary way. Indeed, in such situation we have that G is a p1-group, since
the order of G is the sum of the squares of the degrees of its irreducible characters. Hence p
does not divide the degree of any irreducible character of G and IrrpGq “ Irrp1pGq “ t1Gu
implies G “ 1 as wanted. We show that the same result holds if π contains at most two
primes.

Theorem A. Let π “ tp, qu be a set of primes. If Irrπ1pGq “ t1Gu, then G “ 1.

We remark that the result no longer holds if |π| ą 2. For example, if π “ t2, 3, 5u then,
of course, Irrπ1pA5q “ t1u.

Often in representation theory of finite groups we find a duality between statements on
irreducible characters and corresponding ones on conjugacy classes. For instance if p is a
prime and the conjugacy class of the identity is the unique conjugacy class of p1-size of G,
then G “ 1. This is the dual statement of the one for irreducible characters described in
the first paragraph of this section. We care to remark that the conjugacy class-version of
Theorem A does not hold. For instance, the conjugacy class sizes of A5 are 1, 15, 20, 12
and 12, so for every pair of primes π dividing its order, the identity is the only conjugacy
class of A5 of π1-size.

Our proof of Theorem A relies on the Classification of Finite Simple Groups. We do
not know if a CFSG-free proof might exist or if this result heavily depends on properties
inherent to the representations of simple groups.

The key observation to prove Theorem A is that for a simple group G and any set
π “ tp, qu of primes dividing the order of G, there exists some non-principal character
in Irrπ1pGq. Let Γ1pGq be the undirected graph defined as follows. The set of vertices of
Γ1pGq is the set of primes dividing the order of G, denoted πp|G|q. Two vertices p and q
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are adjacent if there is some χ P IrrpGqzLinpGq such that χp1q is not divisible by p nor
by q. Here LinpGq denotes the set of linear characters of G. With this, the claim above
can be stated in the following way.

Theorem B. If G is a non-abelian simple group, then Γ1pGq is complete.

In fact, Theorem A implies that Γ1pGq is complete for every perfect group G. Sur-
prisingly enough, if π consists of two primes, then there are many examples where
Irrπ1pGq “ LinpGq. For instance, this is the case if G “ PSL2p27q ¨C3 and π “ t3, 13u. In-
finitely many other examples of this phenomena can be found among symmetric, general
linear, and general unitary groups as shown by Theorems 2.8 and 3.5 below. Further, we
describe the structure of Γ1pGq in the latter cases in Corollaries 2.9 and 3.6.

Finally, we also analyze the opposite situation: we characterize finite groups G with
totally disconnected graph Γ1pGq.

Theorem C. Let G be a group. Then Γ1pGq is totally disconnected if, and only if, G is
solvable and NGpHq XG

1 “ H 1 for every π-Hall subgroup H of G, where π is any pair of
primes dividing the order of G.

The paper is structured as follows. In Section 1 we prove Theorem A assuming that
Theorem B holds. We also prove Theorem C, using previous results of Bianchi, Chillag,
Lewis, and Pacifici [BCLP07] and of Navarro and Wolf [NW02]. The rest of the paper
is devoted to the proof of Theorem B on finite simple groups. In Section 2, we prove
that Γ1pGq is complete whenever G is an alternating group, and we describe Γ1pGq for
symmetric groups. In Section 3, we prove that Γ1pGq is complete when G is a sporadic
group or simple group of Lie type, completing the proof of Theorem B by applying the
Classification of Finite Simple Groups. We also provide there a description of Γ1pGq when
G is a general linear or general unitary group.
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1. On Theorems A and C

Assuming that Theorem B holds, which follows from Corollary 2.10 and Theorem 3.4
below, we can prove Theorem A.

Proof of Theorem A. By way of contradiction assume that G ą 1. We may assume that
|π| “ 2 and that p and q divide the order of G, otherwise the result follows from the
case where |π| “ 1 treated in the introduction. The fact that LinpGq Ď Irrπ1pGq “ t1Gu
forces G to be perfect. Moreover, if N Ÿ G has index coprime to p, then Irrπ1pG{Nq “
Irrq1pG{Nq “ t1G{Nu implies N “ G. Similarly, one concludes that G has no normal
subgroup of index coprime to q. If we let MŸG be the first (proper) term in a composition
series of G, then S “ G{M is a simple non-abelian group of order divisible by p and q.



CHARACTERS OF π1-DEGREE 3

Since the property is inherited by quotients of G, we have that Irrπ1pG{Mq “ t1G{Mu. By
Theorem B we conclude that G “M , and this is a contradiction. �

The proof of Theorem C relies on [BCLP07] and [NW02]. We will first show that if
Γ1pGq is totally disconnected, then the group G must be solvable. For a group G, the
common-divisor character degree graph ΓpGq of G is defined as follows. The vertices of
ΓpGq are the degrees of the irreducible characters of G, and two vertices a and b are
adjacent if gcdpa, bq ą 1. In [BCLP07], the authors prove that if ΓpGq is connected, then
G is solvable.

Lemma 1.1. Let G be a group with totally disconnected Γ1pGq. Then G is solvable.

Proof. By Burnside’s paqb-theorem we may assume that the order of G is divisible by
at least three different primes. Since Γ1pGq is totally disconnected, if the order of G is
divisible by m primes, then the degree of every non-linear irreducible character of G is
divisible by at least m ´ 1 primes. In particular, ΓpGq is complete. We conclude that G
is solvable by [BCLP07, Main Theorem]. �

The condition Irrπ1pGq “ LinpGq for solvable groups was studied in [NW02].

Theorem 1.2 (Navarro, Wolf). Let G be a solvable group and let π be any set of primes.
Let H be a Hall π-group of G. Then Irrπ1pGq “ LinpGq if, and only if, NGpHqXG

1 “ H 1.

Proof. This is Corollary 3 in [NW02]. �

These results allows us to characterize the groups G with totally disconnected Γ1pGq.

Proof of Theorem C. If Γ1pGq is totally disconnected, then by Lemma 1.1, the group G
is solvable and the direct implication follows from Theorem 1.2. The reverse implication
follows directly from Theorem 1.2. �

We find interesting to mention that, together with Theorem A, the Navarro-Wolf the-
orem also provides a necessary condition for a solvable group to have the same set of
character degrees as a perfect group (this problem was studied in [N15] and [NR14],
where the authors show that such solvable groups do exist).

Corollary 1.3. Let G be a solvable group. Suppose that G has the same set of character
degrees as some perfect group. Then for any pair π of primes dividing the order of G and
for every π-Hall subgroup H of G, one has NGpHq XG

1 ‰ H 1.

Proof. Let K be a perfect group such that G and K have the same set of character degrees.
As a consequence of Theorem A, Γ1pKq is complete, and it is easy to see that also Γ1pGq
is complete. Then Irrπ1pGq “ LinpGq for every pair of primes π dividing the order of G.
The claim follows from Theorem 1.2. �

This necessary condition in Corollary 1.3 is not a sufficient condition for a solvable
group G to have the same set of character degrees as a perfect group. For instance, let
G “ D8 ˆ E3 ˆ E5, where here Ep denotes an extraspecial group of order p3. Then
the set of character degrees of G is t1, 2, 3, 5, 6, 15, 20, 30u. Suppose that K is a perfect
group with this set of character degrees. Let M be a maximal normal subgroup of K, so
that S “ K{M is simple non-abelian. Then the set of character degrees of S would be
contained in t1, 2, 3, 5, 6, 15, 20, 30u, a contradiction.
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We end this section with the description of Γ1pGq for nilpotent groups.

Remark 1.4. Let G be a nilpotent non-abelian group of order |G| “ pa11 ¨ ¨ ¨ p
ak
k for primes

pi, ai ą 0 and k ě 3. Recalling that G is the direct product of its Sylow subgroups, we
see that Γ1pGq is complete if, and only if, at most k´3 Sylow subgroups of G are abelian.
In the case where k ´ 2 Sylow subgroups are abelian, there is an edge connecting every
two primes except for the primes corresponding with the non-abelian Sylow subgroups.
In the case where all but one Sylow, say the Sylow pk-subgroup, are abelian, the subgraph
of Γ1pGq defined by tp1, . . . , pk´1u is complete and the vertex pk is isolated.

2. Alternating groups

The aim of this section is to prove Theorem B for alternating groups.

2.1. Background. We recall some basic facts in the representation theory of symmetric
groups. Standard references for this topic are [Ja79], [JK81] and [Ol94]. A partition
λ “ pλ1, λ2, . . . , λ`q is a finite non-increasing sequence of positive integers. If n “

ř

λi,
then we say that λ is a partition of n and we write λ $ n or, sometimes, |λ| “ n. We
denote by Ppnq the set of partitions of n. With a slight abuse of notation, given a sequence
of partitions T “ pµ1, . . . , µtq we will write |T | to denote the number |µ1| ` ¨ ¨ ¨ ` |µt|.

The Young diagram of a partition λ is the set

rλs “ tpi, jq P Nˆ N | 1 ď i ď `, 1 ď j ď λiu,

where we orient N ˆ N with the x-axis pointing right and the y-axis pointing down. We
denote by λ1 the conjugate partition of λ, whose Young diagram is obtained from that of
λ by a reflection over the main diagonal.

Given pr, cq P rλs, the corresponding hook Hpr,cqpλq is the set defined by

Hpr,cqpλq “ tpr, yq P rλs | y ě cu Y tpx, cq P rλs | x ě ru.

We set hr,cpλq “ |Hpr,cqpλq| “ 1`pλr´cq`pλ
1
c´rq. We refer to hr,cpλq as the hook-length

of Hpr,cqpλq. We denote by Hpλq the multiset of hook-lengths in rλs. For e P N we let
Hepλq “ tpr, cq P rλs | e divides hr,cpλqu. If pr, cq P Hepλq, then we say that Hpr,cqpλq is an
e-hook of λ, so that |Hepλq| is the number of e-hooks of λ. We record here an elementary
observation (see [Ol94, Corollary 1.7]) that will be quite useful later in this section.

Lemma 2.2. Let e, f P N and suppose that hr,cpλq “ ef . Then |Hepλq XHpr,cqpλq| “ f.

We denote by λ´Hpr,cqpλq the partition obtained by removing the e-hook Hpr,cqpλq from
λ (see [Ol94, Chapter I] for the precise definition of this process). The e-core Cepλq of
λ is the partition obtained from λ by successively removing all e-hooks. The e-quotient
Qepλq “ pλ

p0q, . . . , λpe´1qq is another important combinatorial object, defined for instance
in [Ol94, Section 3]. The number of e-hooks to be removed from λ to obtain Cepλq is
called the e-weight wepλq. By [Ol94, 3.6] we derive the following equations.

(2.1) |λ| “ ewepλq ` |Cepλq|, and wepλq “ |He
pλq| “ |Qepλq| “ |λ

p0q
| ` ¨ ¨ ¨ ` |λpe´1q|.

Let TQ0 pλq “ pλq, T
Q
1 pλq “ Qepλq “ pλ

p0q, . . . , λpe´1qq and for k ě 1 we define TQk`1pλq to

be the sequence of ek`1 partitions given by

TQk`1pλq “ ppλ
pi1,...,ikqq

p0q, . . . , pλpi1,...,ikqqpe´1qq,
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where pi1, . . . , ikq P t0, 1, . . . , e´ 1uk. The collection of all the sequences TQj pλq for j ě 0

is known as the e-quotient tower of λ. It is not too difficult to see that |Qekpλq| “ |T
Q
k pλq|,

for all k P N. If TQk pλq “ pµ1, . . . , µekq then we let TCk pλq “ pCepµ1q, . . . , Cepµekqq. The
collection of all the sequences TCj pλq for j ě 0 is known as the e-core tower of λ.

Let now p be a prime. As shown in [Ol94, Chap. II], every partition of a given natural
number is uniquely determined by its p-core tower. Using the definitions given above we
observe that for all k P N0 we have that

(2.2) |Hpk
pλq| “ |TQk pλq| “

ÿ

jěk

|TCj pλq|p
j´k, in particular |λ| “

ÿ

jě0

|TCj pλq|p
j.

Partitions of n correspond canonically to the irreducible characters of Sn. We denote
by χλ the irreducible character naturally labelled by λ $ n. We use the notation λ $p1 n
to say that χλ P Irrp1pSnq. We recall that pχλqAn is irreducible if, and only if, λ ‰ λ1.
Otherwise pχλqAn “ ϕ`ϕg for some ϕ P IrrpAnq and g P SnrAn. (See [JK81, Thm. 2.5.7].)
The following result was first proved by MacDonald [Mac71] and it is crucial for our
purposes.

Theorem 2.3. Let p be a prime and let n be a natural number with p-adic expansion
n “

řk
j“0 ajp

j. Let λ be a partition of n. Then

νppχ
λ
p1qq “

`

ÿ

jě0

|TCj pλq| ´
k
ÿ

j“0

aj
˘

{pp´ 1q.

Moreover, νppχ
λp1qq “ 0 if, and only if, |TCj pλq| “ aj for all j P N0.

Here for a natural number m, we denoted by νppmq the maximal integer k such that pk

divides m. We will keep this notation for the rest of the article.
A useful consequence of Theorem 2.3 is stated in the following lemma. This is well-

known to experts in the field. For the reader’s convenience, we only include a brief proof.

Lemma 2.4. Let p, n and λ be as in Theorem 2.3. Then λ $p1 n if and only if |Hpkpλq| “
ak and Cpkpλq $p1 n´ akp

k.

Proof. Assume that |Hpkpλq| “ ak and that Cpkpλq $p1 n ´ akp
k. Since pk`1 ą n, it

follows that |TCs pλq| “ 0 for all s ą k. Hence using equation (2.2) above, we get that

ak “ |Hpkpλq| “ |TCk pλq|. By [Ol94, Theorem 3.3] one deduces that TCj pCpkpλqq “ TCj pλq
for all 0 ď j ă k. Using Theorem 2.3, we deduce that λ $p1 n. The converse implication
is a direct consequence of Theorem 2.3. �

Let Lpnq :“ tpn´x, 1xq | 0 ď x ď n´1u be the set all the hook partitions of the natural
number n. The following fact is an immediate consequence of Lemma 2.4.

Lemma 2.5. Let k P N and let p be a prime. Then χλ P Irrp1pSpkq if and only if λ P Lppkq.

We conclude our preliminaries with the following technical lemma.

Lemma 2.6. Let k P Ną0 and let ε P t0, 1u. Let n “ 2k`ε and let λ $ n. If H2kpλq “ H

and |H2k´1
pλq| “ 2 then ν2pχ

λp1qq “ 1.
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Proof. By equations (2.1) we have that n “ |C2k´1pλq| ` 2k´1|H2k´1
pλq|. It follows that

|C2k´1pλq| “ ε. In particular C2k´1pλq is a 2-core partition. Since removing a 2k´1-hook
does not change the 2-core of a partition, we have that C2pλq “ C2pC2k´1pλqq $ ε. Thus
|TC0 pλq| “ |C2pλq| “ ε. Moreover, using equations (2.2), we see that |TCj pλq| “ 0 for all
j ě k. Hence, again by equations (2.2) we conclude that

|TCk´1pλq| “ |T
Q
k´1pλq| “ |H

2k´1

pλq| “ 2, and hence |TCj pλq| “ 0 for all 1 ď j ď k ´ 2.

It follows that
ř

jě0 |T
C
j pλq| “ 2 ` ε, while

řk
j“0 aj “ 1 ` ε. The statement now follows

from Theorem 2.3. �

2.7. Main Results. We are now ready to prove Theorem B for alternating groups. In
order to do this we will first completely describe Γ1pSnq.

Theorem 2.8. Let n ě 5 and let q and p be distinct primes such that 2 ď q, p ď n. Let
π “ tp, qu. Then Irrπ1pSnq “ LinpSnq if and only if q “ 2 and

n “

#

2k “ pm ` 1 or,

2k ` 1 “ pm.

Proof. We aim to construct a partition λ P Ppnq r tpnq, p1nqu such that χλ P Irrπ1pSnq.
Let

t
ÿ

i“1

aip
mi “ n “

r
ÿ

i“1

biq
ki ,

be the p-adic and respectively the q-adic expansions of n, where m1 ą m2 ą ¨ ¨ ¨mt ě 0
and k1 ą k2 ą ¨ ¨ ¨ kr ě 0. It is clear that b1q

k1 ‰ a1p
m1 .

Suppose that b1q
k1 ă a1p

m1 (the statement in the opposite setting will be proved just
by swapping p with q, a1 with b1 and m1 with k1 in what follows). Consider the partition
λ of n defined by:

λ “ pn´ b1q
k1 , n´ a1p

m1 ` 1, 1b1q
k1´pn´a1pn1`1q

q.

Observe that λ is a well-defined partition as λ1 ě λ2 ě λj “ 1, for all j ě 3. Since
h1,1pλq “ a1p

m1 , we deduce that |Hpm1
pλq| ě a1 from Lemma 2.2. By equations (2.1) we

know that |Hpm1
pλq| “ wpm1 pλq ď a1. It follows that |Hpm1

pλq| “ a1. Moreover

Cpm1 pλq “ λ´H1,1pλq “ pn´ a1p
m1q $p1 n´ a1p

m1 .

Using Lemma 2.4, we conclude that χλ P Irrp1pSnq. On the other hand, using a similar
argument, we can also show that χλ P Irrq1pSnq. This follows from Lemma 2.4 because

h2,1pλq “ b1q
k1 , hence |Hqk1 pλq| “ wqk1 pλq “ b1, and again it is routine to check that

Cqk1 pλq “ pn ´ b1q
k1q $q1 n ´ b1q

k1 . We obtain that χλ P Irrπ1pSnq. To conclude we need

to make sure that χλ R LinpSnq (i.e. λ R tpnq, p1nqu).
Since λ2 ě 1 we notice that λ P tpnq, p1nqu if and only if λ “ p1nq and this happens if

and only if n´ a1p
m1 “ λ2 ´ 1 “ 0 and n´ b1q

k1 “ λ1 “ 1. Equivalently, λ P tpnq, p1nqu
if and only if

n “ apm “ bqk ` 1.
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(To ease the notation we renamed a1,m1, b1 and k1 by a,m, b and k respectively.) In this
very specific situation λ “ p1nq, hence we need to pick a different partition. In order to
make this new choice we distinguish two main cases, depending on 2 P tp, qu or not.

Let us first assume that 2 R tp, qu. If b ě 2 then let µ $ n be defined as follows:

µ “ p1` pb´ 1qqk, 1q
k

q.

Notice that h1,1pµq “ apm, h1,2pµq “ pb ´ 1qqk and h2,1pµq “ qk. Hence from Lemma

2.2 we obtain that |Hpmpµq| “ a and that |Hqkpµq| “ b. Moreover, Cpmpµq “ H and
Cqkpµq “ p1q. Using Lemma 2.4 we deduce that χµ P Irrπ1pSnq. Otherwise if b “ 1, then
a “ 2c is even and we let

µ “ pcpm, 2, 1cp
m´2

q.

It is now routine to check that h1,1pµq “ qk, h1,2pµq “ h2,1pµq “ cpm, |Hpmpµq| “ a,

|Hqkpµq| “ 1, Cpmpµq “ H and Cqkpµq “ p1q. Lemma 2.4 implies that χµ P Irrπ1pSnq.

To conclude we now analyze the case where 2 P tq, pu. We have two substantially
different cases to consider. Namely n “ apm “ 2k ` 1 and n “ apm ` 1 “ 2k.

- If n “ 2k “ apm ` 1 then χµ P Irr21pSnq if and only if µ P Lpnq, by Lemma 2.5.
If a ą 1 then we let µ be the partition of n defined as follows.

µ “ p1` pa´ 1qpm, 1p
m

q P Lpnqr tpnq, p1nqu.
We observe that h1,2pµq “ pa ´ 1qpm and h2,1pµq “ pm. Hence |Hpmpµq| “ a by Lemma
2.2, and Cpmpµq “ p1q. Therefore χµ P Irrt2,pu1pSnq by Lemma 2.4.

On the other hand, if a “ 1 then it is not difficult to see that the only characters
in Irrp1pSnq labelled by hook partitions are the trivial and the sign character. More
precisely, we have that Irrp1pSnq r LinpSnq “ tpn ´ x, 2, 1x´2q | 2 ď x ď n ´ 2u. Hence
Irrt2,pu1pSnq “ LinpSnq.

- If n “ 2k ` 1 “ apm and a ą 1 then we define µ $ n as follows.

µ “ p1` pa´ 1qpm, 2, 1p
m´2

q.

It is routine to check that h11pµq “ 2k, h1,2pµq “ pa ´ 1qpm and that h2,1pµq “ pm. We
conclude that χµ P Irrt2,pu1pSnq, by Lemma 2.4.

If a “ 1 then χµ P Irrp1pSnq if and only if µ P Lpnq, by Lemma 2.5. It is now easy to
check that the only characters in Irr21pSnq labelled by hook partitions are the trivial and
the sign character. Hence Irrt2,pu1pSnq “ LinpSnq. �

Theorem 2.8 can be reformulated as follows.

Corollary 2.9. The graph Γ1pSnq is not complete if and only if n “ 2k “ pm ` 1 or
n “ 2k ` 1 “ pm. In these cases the subgraphs of Γ1pSnq defined by πp|Sn|q r t2u and by
πp|Sn|qr tpu are complete, and there is no edge between 2 and p.

Corollary 2.10. Let p ‰ q be two primes and define π :“ tp, qu. Then |Irrπ1pAnq| ą 1,
for all n ě 5.

Proof. By Theorem 2.8 there exists λ P Ppnqr tpnq, p1nqu such that χλ P Irrπ1pSnq, unless
q “ 2 and n “ 2k “ pm ` 1 or n “ 2k ` 1 “ pm. In all these cases, let ϕ P IrrpAnq
be an irreducible constituent of pχλqAn . Then ϕp1q P tχλp1q, χλp1q{2u. In particular
ϕ P Irrπ1pAnq.
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Suppose now that q “ 2 and n “ 2k “ pm ` 1 or n “ 2k ` 1 “ pm. We let µ be the
partition of n defined as follows:

µ “

$

’

&

’

%

p2k´1 ` 1, 12k´1
q if n “ pm “ 2k ` 1,

p2k´1, 2, 12k´1´2q if n “ pm ` 1 “ 2k.

(Notice that µ is well defined because n ą 4.) In both cases we see that H2kpµq “ H

and that |H2k´1
pµq| “ 2. Therefore by Lemma 2.6 we deduce that ν2pχ

µp1qq “ 1. Since
µ “ µ1 we conclude that ϕp1q “ χµp1q{2 is odd, for any irreducible constituent ϕ of
pχµqAn . Moreover, in both cases h1,1pµq “ pm and

Cpmpµq “

#

H if n “ pm “ 2k ` 1,

p1q if n “ pm ` 1 “ 2k.

Hence Lemma 2.4 guarantees that χµ P Irrp1pSnq. We conclude that ϕ P Irrπ1pAnq. �

3. Groups of Lie Type and Sporadic Groups

The aim of this section is to complete the proof of Theorem B. We begin with the case of
the sporadic groups and certain groups of Lie type that may be treated computationally.

Lemma 3.1. The simple groups G2p3q, G2p4q,
2G2p3q

1, 2F4p2q
1, and 2E6p2q and the 26

sporadic groups satisfy Theorem B.

Proof. This can be seen using GAP and the Character Table Library. �

Let G “ GF be the group of fixed points of a connected reductive algebraic group G
defined over Fr under a Steinberg map F . Here r is a prime and Fr is an algebraic closure
of the finite field of cardinality r. We will call a group G of this form a finite reductive
group. Further, let G˚ “ pG˚qF

˚

, where pG˚, F ˚q is dual to pG, F q.
The set of irreducible characters IrrpGq can be written as a disjoint union

Ů

EpG, sq
of rational Lusztig series corresponding to G˚-conjugacy classes of semisimple elements
s P G˚. The characters in the series EpG, 1q are called unipotent characters, and there is
a bijection EpG, sq Ñ EpCG˚psq, 1q. Hence, characters of IrrpGq may be indexed by pairs
ps, ψq, where s P G˚ is a semisimple element, up to G˚-conjugacy, and ψ P IrrpCG˚psqq is
a unipotent character.

Further, if χ P IrrpGq is indexed by the pair ps, ψq, then the degrees of χ and ψ are
related in the following way:

(3.1) χp1q “ |G˚ : CG˚psq|r1ψp1q

(see [DM91, Remark 13.24]). Here for a natural number n and a prime p, we denote by
np1 the largest integer m dividing n such that gcdpm, pq “ 1. Similarly, we will denote
the number pνppnq by np.

Lemma 3.2. Let G “ GF be a finite reductive group defined over a field of characteristic
r. Let p ‰ q be two primes and define π :“ tp, qu. Then |Irrπ1pGq| ą 1.
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Proof. First, suppose p ‰ r and q ‰ r. Then the degree of the Steinberg character StG
is a power of r (see for example [DM91, Corollary 9.3]), and is therefore an element in
Irrπ1pGq. Then we may assume that p is the defining characteristic for G. That is, we
assume r “ p.

Now, let Q be a Sylow q-subgroup of G˚ and let s P ZpQq be nontrivial. Then s is
semisimple, since q ‰ p, and certainly Q ď CG˚psq. Hence taking χ to be indexed by
ps, 1CG˚ psq

q, we have q - χp1q and p - χp1q from (3.1), so χ P Irrπ1pGq. �

Before we extend the above result to prove Theorem B in the case of simple groups of
Lie type, we note the following straightforward but useful lemma.

Lemma 3.3. Let G be a perfect group and let q be prime. Suppose that |ZpGq| is a power
of q and that χ P IrrpGq has degree prime to q. Then ZpGq is in the kernel of χ.

Proof. Write Z “ ZpGq. The order opλq of λ P IrrpZq lying under χ must divide χp1q,
since 1Z “ detpχqZ “ λχp1q. �

We are now ready to complete the proof of Theorem B.

Theorem 3.4. Let S be a finite simple group such that S “ G{ZpGq for G “ GF a finite
reductive group of simply connected type defined over Fra for some prime r. Let p ‰ q be
two primes and define π :“ tp, qu. Then |Irrπ1pSq| ą 1.

Proof. By Lemma 3.1, we may assume S is not one of the groups listed there, and by
Section 2, we may assume S is not isomorphic to an alternating group. We wish to show
that the character χ constructed in the proof of Lemma 3.2 can be chosen to be trivial on
ZpGq. This is satisfied for StG, so we again assume r “ p. By [NT13, Lemma 4.4(ii)], it
therefore suffices to show that the semisimple element s used in the proof of Lemma 3.2
can be chosen to be contained in pG˚q1.

Here G is quasisimple and |ZpGq| “ |G˚ : pG˚q1|, where pG˚q1 denotes the commutator
subgroup of G˚. Now, if q - |ZpGq|, then Q ď pG˚q1, where Q is any Sylow q-subgroup
of G˚, and the s chosen in Lemma 3.2 is in this case contained in pG˚q1. Combining this
with Lemma 3.3, we may therefore assume that q divides |ZpGq| but that |ZpGq| is not a
power of q. This leaves only the case that G is of type A.

Hence, for the remainder of the proof, we assume that G “ SLεnpp
aq with ε P t˘1u.

Here ε “ 1 means G “ SLnpp
aq, ε “ ´1 means G “ SUnpp

aq, and |ZpGq| “ gcdpn, pa´ εq.

Recall from above that we may assume n is not a power of q. Writing rG “ GLεnpp
aq, we

further have

G˚ – rG{Zp rGq and pG˚q1 – GZp rGq{Zp rGq – S,

and we will make these identifications.
Let rQ be a Sylow q-subgroup of rG, so that Q :“ rQZp rGq{Zp rGq is a Sylow q-subgroup

of G˚. Now, if ZpQq X pG˚q1 ‰ 1, we can take s to be a nontrivial element of this
intersection, and we are done. So we may assume ZpQq X pG˚q1 “ 1, in which case
ZpQq – ZpQqpG˚q1{pG˚q1 ď G˚{pG˚q1 and we see that |ZpQq| divides gcdpn, pa´ εqq, since

|G˚ : pG˚q1| “ gcdpn, pa ´ εq, and hence |Zp rQq| divides ppa ´ εqq ¨ gcdpn, pa ´ εqq.
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Now, writing n “ a0 ` a1q ` a2q
2 ` ¨ ¨ ¨ ` atq

t with 0 ď ai ă q for the q-adic expansion

of n, we see by [We95] and [CF64] that rQ can be chosen as the direct product

rQ “
t
ź

i“0

Qai
i

where Qi is a Sylow q-subgroup of GLεqipp
aq, and this identification can be made by

embedding the matrices block-diagonally into rG. Note that ZpQiq contains the Sylow

q-subgroup of ZpGLεqipp
aqq – Cpa´ε. Then |Zp rQq| ą ppa´ εq2q, a contradiction, unless n is

of the form qi ` qj for some 0 ď i ď j. (Note that this includes the case n “ 2qi for some

i ě 1, which can only occur if q ‰ 2.) Further, |Zp rQq| ą ppa ´ εqq ¨ gcdpn, pa ´ εqq unless
ppa ´ εqq | nq. Since nq “ qi, this means we must have ppa ´ εqq | q

i.
Now let µ be any nontrivial element in the Sylow q-subgroup of Cpa´ε, viewed inside

Fˆpa or Fˆp2a , corresponding to the cases ε “ 1 and ´1, respectively. Consider the element

x “ pµIqi , Iqjq P ZpGLεqipp
aqq ˆ ZpGLεqjpp

aqq ď Zp rQq. Then x is a non-central semisimple

element of rG in Zp rQq and satisfies detpxq “ µq
i
“ 1, where the last equality follows from

the fact that ppa ´ εqq | q
i. Hence x P G and therefore the element s :“ xZp rGq is a

nontrivial element of GZp rGq{Zp rGq “ pG˚q1 in ZpQq, again a contradiction. �

Using the construction in the proof of Theorem 3.4, we find an analogue of Theorem
2.8 and Corollary 2.9 for the groups GLεnpr

aq.

Theorem 3.5. Let q ‰ p be two prime numbers and write π :“ tp, qu. Let G “ GLεnpr
aq

for a prime r and ε P t˘1u. Then Irrπ1pGq “ LinpGq if and only if there is some k ě 0
such that pr, nq “ pp, qkq and q | ppa ´ εq, up to reordering p and q.

Proof. Note that in this case, we may identify G – G˚. First assume that Irrπ1pGq “
LinpGq. Since the Steinberg character of G has degree ranpn´1q{2, it must be that r “ p or
r “ q. Without loss, we assume that r “ p.

Let Q be a Sylow q-subgroup of G. Then any character of degree prime to q can
be indexed by a pair ps, ψq, where s centralizes Q and ψ has degree prime to q, using
(3.1). However, LinpGq is comprised of characters indexed by pairs pz, 1Gq for z P ZpGq
(see [DM91, Proposition 13.30]), so it follows that there are no non-central semisimple
elements of G centralizing Q. In particular, this shows that q | ppa ´ εq, since otherwise
q - |ZpGq|, so QX ZpGq “ 1, yielding non-central semisimple elements of G contained in
ZpQq. Further, arguing as in the proof of Proposition 3.4, we see n “ qk for some integer
k, since otherwise |ZpQq| ě ppa ´ εq2q and there is some semisimple element in ZpQq not
contained in ZpGq.

Conversely, assume that r “ p, n “ qk, and q | ppa ´ εq. Since the centralizer of a
semisimple element s P G is a product of groups of the form GLεini

ppaiq, [Ma07, Theorem
6.8] and [DM91, Proposition 13.20] yield that the only unipotent characters of CGpsq with
degree prime to p are linear. It therefore suffices to show that if s P G is semisimple and
Q ď CGpsq, then s P ZpGq.

Let s P G be a semisimple element centralizing Q. For i ě 0, let Qi and Ti denote a
Sylow q-subgroup of GLεqipp

aq and Sqi , respectively. Using [CF64] and [We95], we have
Q “ Qk is of the form Q1 o Tk´1.
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Suppose q is odd. If ε “ 1, then further Q “ Q0 o Tk – Cppa´1qq o Tk. In particular,

in this case, the normal subgroup Cqk

ppa´1qq
of Q may be viewed as the Sylow q-subgroup

of a maximally split torus, consisting of diagonal matrices. Since s must centralize this
subgroup, we have s is also a diagonal matrix. Further, with this identification, Tk acts
via permuting the copies of Cppa´1qq , and hence the diagonal entries of a diagonal matrix.
Then since s must commute with this subgroup, we see that s is a scalar matrix, so is in
ZpGq.

Now let ε “ ´1, so G “ GUqkpp
aq ď GLqkpp

2aq. Then since q | ppa ` 1q, [We95, 4(ii)]
yields that Q is a Sylow q-subgroup of GLqkpp

2aq. As q | pp2a´1q, the previous paragraph
shows that s must be an element of ZpGq.

Finally, assume q “ 2 and ε P t˘1u. Then by [CF64], we have NGpQq – Q ˆ Cppa´εq21 ,
where the factor Cppa´εq21 is embedded naturally as the largest odd-order subgroup of
ZpGq, which shows that an element of CGpQq must be a member of ZpQqZpGq. But since
x P ZpQq must commute with the action of Tk´1, ZpQq must be comprised of elements of

Q2k´1

1 whose components are all the same. Further, these components must be in ZpQ1q.
Considering the description in [CF64] of the Sylow 2-subgroups Q1 of GLε2pp

aq, we see
that ZpQq therefore consists of scalar matrices, and hence elements of ZpGq. �

Corollary 3.6. Let q ‰ p be two prime numbers and write π :“ tp, qu. Let G “ GLεnpr
aq

for a prime r and ε P t˘1u. Then Γ1pGq is not complete if and only if there is some k ě 0
such that pr, nq “ pp, qkq and q | ppa ´ εq, up to reordering p and q. In this case, the
subgraphs of Γ1pGq defined by πp|G|qr tpu and by πp|G|qr tqu are complete, and there is
no edge between p and q.
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