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ABSTRACT. Let G be a finite group and let 7 be a set of primes. Write Irr,, (G) for the
set of irreducible characters of degree not divisible by any prime in 7. We show that if
7 contains at most two prime numbers and the only element in Irr, (G) is the principal
character, then G = 1.

INTRODUCTION

Let G be a finite group and let m be a set of primes. Write Irr/(G) for the set of
irreducible characters of degree not divisible by any prime in 7. If 7 = {p}, then we use
the standard notation Irr,(G) = Irry(G). The condition Irry, (G) = {lg} implies that
G = 1 in an elementary way. Indeed, in such situation we have that G is a p’-group, since
the order of GG is the sum of the squares of the degrees of its irreducible characters. Hence p
does not divide the degree of any irreducible character of G and Irr(G) = Irryy (G) = {1¢}
implies G = 1 as wanted. We show that the same result holds if 7 contains at most two
primes.

Theorem A. Let m = {p, q} be a set of primes. If v, (G) = {1g}, then G = 1.

We remark that the result no longer holds if || > 2. For example, if 7 = {2,3,5} then,
of course, Irr(As) = {1}.

Often in representation theory of finite groups we find a duality between statements on
irreducible characters and corresponding ones on conjugacy classes. For instance if p is a
prime and the conjugacy class of the identity is the unique conjugacy class of p'-size of G,
then G = 1. This is the dual statement of the one for irreducible characters described in
the first paragraph of this section. We care to remark that the conjugacy class-version of
Theorem A does not hold. For instance, the conjugacy class sizes of A5 are 1, 15, 20, 12
and 12, so for every pair of primes 7 dividing its order, the identity is the only conjugacy
class of As of 7'-size.

Our proof of Theorem A relies on the Classification of Finite Simple Groups. We do
not know if a CFSG-free proof might exist or if this result heavily depends on properties
inherent to the representations of simple groups.

The key observation to prove Theorem A is that for a simple group G and any set
m = {p,q} of primes dividing the order of G, there exists some non-principal character
in Irr/(G). Let I"(G) be the undirected graph defined as follows. The set of vertices of
I[''(G) is the set of primes dividing the order of G, denoted 7(|G|). Two vertices p and ¢
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are adjacent if there is some y € Irr(G)\Lin(G) such that x(1) is not divisible by p nor
by g. Here Lin(G) denotes the set of linear characters of G. With this, the claim above
can be stated in the following way.

Theorem B. If G is a non-abelian simple group, then I'(G) is complete.

In fact, Theorem A implies that I"(G) is complete for every perfect group G. Sur-
prisingly enough, if 7 consists of two primes, then there are many examples where
Irr,»(G) = Lin(G). For instance, this is the case if G = PSLy(27) - C5 and 7 = {3,13}. In-
finitely many other examples of this phenomena can be found among symmetric, general
linear, and general unitary groups as shown by Theorems 2.8 and 3.5 below. Further, we
describe the structure of I'V(G) in the latter cases in Corollaries 2.9 and 3.6.

Finally, we also analyze the opposite situation: we characterize finite groups G with
totally disconnected graph I"(G).

Theorem C. Let G be a group. Then I''(G) is totally disconnected if, and only if, G is
solvable and Ng(H) n G' = H' for every n-Hall subgroup H of G, where 7 is any pair of
primes dividing the order of G.

The paper is structured as follows. In Section 1 we prove Theorem A assuming that
Theorem B holds. We also prove Theorem C, using previous results of Bianchi, Chillag,
Lewis, and Pacifici [BCLP07] and of Navarro and Wolf [NW02]. The rest of the paper
is devoted to the proof of Theorem B on finite simple groups. In Section 2, we prove
that I"(G) is complete whenever G is an alternating group, and we describe I'(G) for
symmetric groups. In Section 3, we prove that IV(G) is complete when G is a sporadic
group or simple group of Lie type, completing the proof of Theorem B by applying the
Classification of Finite Simple Groups. We also provide there a description of I'(G) when
G is a general linear or general unitary group.
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1. ON THEOREMS A AND C

Assuming that Theorem B holds, which follows from Corollary 2.10 and Theorem 3.4
below, we can prove Theorem A.

Proof of Theorem A. By way of contradiction assume that G > 1. We may assume that
|| = 2 and that p and ¢ divide the order of G, otherwise the result follows from the
case where |7| = 1 treated in the introduction. The fact that Lin(G) < It (G) = {15}
forces G to be perfect. Moreover, if N < G has index coprime to p, then Irr(G/N) =
Irry (G/N) = {lg/n} implies N = G. Similarly, one concludes that G' has no normal
subgroup of index coprime to ¢. If we let M <G be the first (proper) term in a composition
series of G, then S = G/M is a simple non-abelian group of order divisible by p and g.
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Since the property is inherited by quotients of G, we have that Irr (G/M) = {1g/m}. By
Theorem B we conclude that G = M, and this is a contradiction. ([l

The proof of Theorem C relies on [BCLP07] and [NW02]. We will first show that if
I''(G) is totally disconnected, then the group G must be solvable. For a group G, the
common-divisor character degree graph I'(G) of G is defined as follows. The vertices of
I'(G) are the degrees of the irreducible characters of G, and two vertices a and b are
adjacent if ged(a,b) > 1. In [BCLPO07], the authors prove that if I'(G) is connected, then
G is solvable.

Lemma 1.1. Let G be a group with totally disconnected I'(G). Then G is solvable.

Proof. By Burnside’s p?¢’-theorem we may assume that the order of G is divisible by
at least three different primes. Since I'(G) is totally disconnected, if the order of G is
divisible by m primes, then the degree of every non-linear irreducible character of G is
divisible by at least m — 1 primes. In particular, I'(G) is complete. We conclude that G
is solvable by [BCLP07, Main Theorem)]. O

The condition Irr,/(G) = Lin(G) for solvable groups was studied in [NW02].

Theorem 1.2 (Navarro, Wolf). Let G be a solvable group and let m be any set of primes.
Let H be a Hall w-group of G. Then Irrv(G) = Lin(G) if, and only if, Ng(H) nG' = H'.

Proof. This is Corollary 3 in [NW02]. O
These results allows us to characterize the groups G with totally disconnected I'(G).

Proof of Theorem C. If T'(G) is totally disconnected, then by Lemma 1.1, the group G
is solvable and the direct implication follows from Theorem 1.2. The reverse implication
follows directly from Theorem 1.2. O

We find interesting to mention that, together with Theorem A, the Navarro-Wolf the-
orem also provides a necessary condition for a solvable group to have the same set of
character degrees as a perfect group (this problem was studied in [N15] and [NR14],
where the authors show that such solvable groups do exist).

Corollary 1.3. Let G be a solvable group. Suppose that G has the same set of character
degrees as some perfect group. Then for any pair © of primes dividing the order of G and
for every m-Hall subgroup H of G, one has Ng(H) nG' # H'.

Proof. Let K be a perfect group such that G and K have the same set of character degrees.
As a consequence of Theorem A, I"(K) is complete, and it is easy to see that also I'(G)
is complete. Then Irr,/(G) = Lin(G) for every pair of primes 7 dividing the order of G.
The claim follows from Theorem 1.2. 0J

This necessary condition in Corollary 1.3 is not a sufficient condition for a solvable
group G to have the same set of character degrees as a perfect group. For instance, let
G = Dg x F3 x Ej, where here E, denotes an extraspecial group of order p®. Then
the set of character degrees of G is {1,2,3,5,6,15,20,30}. Suppose that K is a perfect
group with this set of character degrees. Let M be a maximal normal subgroup of K, so
that S = K/M is simple non-abelian. Then the set of character degrees of S would be
contained in {1,2,3,5,6, 15,20, 30}, a contradiction.
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We end this section with the description of I'(G) for nilpotent groups.

Remark 1.4. Let G be a nilpotent non-abelian group of order |G| = p{* - - - pi* for primes
pi, a; > 0 and k > 3. Recalling that G is the direct product of its Sylow subgroups, we
see that I(G) is complete if, and only if, at most k& — 3 Sylow subgroups of G are abelian.
In the case where k — 2 Sylow subgroups are abelian, there is an edge connecting every
two primes except for the primes corresponding with the non-abelian Sylow subgroups.
In the case where all but one Sylow, say the Sylow pg-subgroup, are abelian, the subgraph
of I'(G) defined by {p1,...,pr_1} is complete and the vertex py is isolated.

2. ALTERNATING GROUPS
The aim of this section is to prove Theorem B for alternating groups.

2.1. Background. We recall some basic facts in the representation theory of symmetric

groups. Standard references for this topic are [Ja79], [JK81] and [O194]. A partition

A = (A1, A2, ..., Ar) is a finite non-increasing sequence of positive integers. If n = >\,

then we say that A is a partition of n and we write A - n or, sometimes, |A| = n. We

denote by P(n) the set of partitions of n. With a slight abuse of notation, given a sequence

of partitions T' = (p1,. .., p;) we will write |T'| to denote the number |p| + -+ + |-
The Young diagram of a partition X is the set

A ={(i,/)) eNxN[1<i</(1<j<N}

where we orient N x N with the x-axis pointing right and the y-axis pointing down. We
denote by A the conjugate partition of A\, whose Young diagram is obtained from that of
A by a reflection over the main diagonal.

Given (r,c) € [A], the corresponding hook H(, () is the set defined by
HioN) ={(ry) e [N y=ctu{(z,c)e[A] |z =r}.

We set by o(X) = [Hpo(AN)] = 14+ (A —¢) + (A, — 7). We refer to h,.(A) as the hook-length
of Hi;¢)(A). We denote by H(A) the multiset of hook-lengths in [A]. For e € N we let
HE(A) = {(r,c) € [A] | e divides h,.(\)}. If (r,c) € H®(X), then we say that H.»()) is an
e-hook of A, so that [#H¢(\)| is the number of e-hooks of \. We record here an elementary
observation (see [0194, Corollary 1.7]) that will be quite useful later in this section.

Lemma 2.2. Let e, f € N and suppose that h,.(\) = ef. Then |H*(A) N Hiy)(N)| = f.

We denote by A— H, () the partition obtained by removing the e-hook H, () from
A (see [O194, Chapter I] for the precise definition of this process). The e-core C,(\) of
A is the partition obtained from A by successively removing all e-hooks. The e-quotient
Qc(\) = (MO, ... A7) is another important combinatorial object, defined for instance
in [0194, Section 3]. The number of e-hooks to be removed from A to obtain C.()) is
called the e-weight w.(A). By [O194, 3.6] we derive the following equations.

(21) Al = ewe(A) +[Ce(V)], and we(N) = [H W) = [Qc(A)] = [AV] + -+ AV,
Let T2(A) = (A), TP (\) = Q.(A) = (MA@, ... ) MDY and for k > 1 we define T2 ()) to
be the sequence of e**! partitions given by

T (A) = (A0 (\Gin)y(e=1)),

k+1
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where (iy,...,i;) € {0,1,...,e — 1}*. The collection of all the sequences TJ-Q()\) for j =0
is known as the e-quotient tower of A. Tt is not too difficult to see that [Q.(\)| = |T/*(\)],
for all ke N. If T2(A) = (pa, ..., fter) then we let TE(A) = (Colptr), - . ., Ce(pter)). The
collection of all the sequences ch()\) for 7 > 0 is known as the e-core tower of A.

Let now p be a prime. As shown in [O194, Chap. II], every partition of a given natural

number is uniquely determined by its p-core tower. Using the definitions given above we
observe that for all £ € Ny we have that

(2.2) V)] = [TZ)] = DT NP, i particular A = Y [TE (V).

j=k j=0

Partitions of n correspond canonically to the irreducible characters of S,,. We denote
by x* the irreducible character naturally labelled by A - n. We use the notation A -, n
to say that x* € Irry(S,). We recall that (x*)a, is irreducible if, and only if, A # \.
Otherwise (x*)a, = @+¢? for some ¢ € Irr(A,,) and g € S,,\A,,. (See [JK81, Thm. 2.5.7].)
The following result was first proved by MacDonald [Mac71] and it is crucial for our
purposes.

Theorem 2.3. Let p be a prime and let n be a natural number with p-adic expansion
n = Z?:o a;p’. Let \ be a partition of n. Then

k
(1) = (51T ()] - Z a;)/(p—1).

>0
Moreover, v,(x*(1)) = 0 if, and only if, [TF(N)| = a; for all j € Ny.

Here for a natural number m, we denoted by v,(m) the maximal integer k such that p*
divides m. We will keep this notation for the rest of the article.

A useful consequence of Theorem 2.3 is stated in the following lemma. This is well-
known to experts in the field. For the reader’s convenience, we only include a brief proof.

Lemma 2.4. Let p,n and X be as in Theorem 2.3. Then A -y n if and only if |’H7’k()\)\ =
ar and Cy(N) by n — agp".

Proof. Assume that |#?"(\)| = a; and that Cpe(A) Fy n — agp®. Since p**! > n, it
follows that [T(\)| = 0 for all s > k. Hence using equation (2.2) above, we get that
ar = [H” (\)| = [TE(N)]. By [0194, Theorem 3.3] one deduces that TE(Cpr(N) = TF (V)
for all 0 < j < k. Using Theorem 2.3, we deduce that A -, n. The converse implication
is a direct consequence of Theorem 2.3. O

Let L(n) := {(n—x,1%) | 0 < © < n—1} be the set all the hook partitions of the natural
number n. The following fact is an immediate consequence of Lemma 2.4.

Lemma 2.5. Let k € N and let p be a prime. Then x* € Irr,y (S,) if and only if X € L(p).
We conclude our preliminaries with the following technical lemma.

Lemma 2.6. Let k € Nog and let e € {0,1}. Letn = 2 +¢ and let A —n. If H> (\) = &
and |[H2"7'(N)| = 2 then 1a(x*(1)) = 1.
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Proof. By equations (2.1) we have that n = |Chr-1(N)| + 2871 H2" 7 (A)]. Tt follows that
|Cor-1(\)| = e. In particular Cyr—1(\) is a 2-core partition. Since removing a 2¥~!-hook
does not change the 2-core of a partition, we have that Cy(\) = Co(Cor-1(A\)) F €. Thus
IT5' (M) = |C2(X)| = e. Moreover, using equations (2.2), we see that [T/°(A)| = 0 for all
j = k. Hence, again by equations (2.2) we conclude that

TN = 1T2,(V)] = [H* (V)] = 2, and hence [TE(\)| =0 forall 1 < j < k — 2.

It follows that >, ITE(AN)| = 2 + ¢, while Z?:o aj = 1+ . The statement now follows
from Theorem 2.3. O

2.7. Main Results. We are now ready to prove Theorem B for alternating groups. In
order to do this we will first completely describe I'(S,,).

Theorem 2.8. Let n > 5 and let q and p be distinct primes such that 2 < q,p < n. Let
m={p,q}. Then Irr(S,) = Lin(S,) if and only if ¢ = 2 and

2F =p™ 41  or,
n:
28+ 1 =pm

Proof. We aim to construct a partition A € P(n) \ {(n), (1")} such that x* € Irr(S,).

Let
t r
Z aipmi =n= Z bzqkz7
i=1 =1

be the p-adic and respectively the g-adic expansions of n, where m; > mg > ---my; = 0
and ky > ky > ---k, > 0. It is clear that b1¢" # a;p™.

Suppose that by¢¥' < a;p™ (the statement in the opposite setting will be proved just
by swapping p with ¢, a; with b; and m; with k; in what follows). Consider the partition
A of n defined by:

A= (n — b1qk1, n—ap™ + 1, 1b1qk1_(n_a1pnl+1))‘

Observe that A is a well-defined partition as A\; > Ay > A; = 1, for all j > 3. Since
hi1(A) = a;p™, we deduce that |HP™ (\)| = a; from Lemma 2.2. By equations (2.1) we
know that [HP™ (A\)| = wpmi (A) < ay. It follows that [HP™' ()| = a;. Moreover

Comi(A) = A—Hi1(A) = (n—a1p™) by n—a;p™.

Using Lemma 2.4, we conclude that x* € Irr,(S,). On the other hand, using a similar
argument, we can also show that x* € Irr,(S,). This follows from Lemma 2.4 because
hai(A) = big*', hence [HT' (N)| = wgr (A) = by, and again it is routine to check that
Cyi(N) = (n = b1¢™) ¢ n — big". We obtain that x* € Irr(S,,). To conclude we need
to make sure that y* ¢ Lin(S,) (i.e. X ¢ {(n), (1")}).

Since Ay = 1 we notice that A € {(n), (1)} if and only if A = (1™) and this happens if
and only if n — a;p™ = Xy — 1 =0 and n — by¢" = \; = 1. Equivalently, \ € {(n), (1")}
if and only if

n = ap™ = bg" + 1.
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(To ease the notation we renamed ay,mq, by and k; by a, m,b and k respectively.) In this
very specific situation A = (1™), hence we need to pick a different partition. In order to
make this new choice we distinguish two main cases, depending on 2 € {p, ¢} or not.
Let us first assume that 2 ¢ {p,q}. If b = 2 then let u — n be defined as follows:
p=(1+ (b= 1)g"17).
Notice that hy1(p) = ap™, hia(p) = (b—1)¢* and hyy(p) = ¢*. Hence from Lemma
2.2 we obtain that |HP" ()| = a and that |H9" (u)] = b. Moreover, Cym(p) = & and
Cor(p) = (1). Using Lemma 2.4 we deduce that x* € Irr/(S,). Otherwise if b = 1, then

q
a = 2c¢ is even and we let

p=(cp™, 2,177 72,
It is now routine to check that hy(p) = ¢, hia(p) = hoi(p) = cp™, |HP" (1) = a,
1Y ()| = 1, Cpm(p) = @ and Cye (1) = (1). Lemma 2.4 implies that y* € Irrp(S,).

To conclude we now analyze the case where 2 € {q,p}. We have two substantially
different cases to consider. Namely n = ap™ = 2¥ + 1 and n = ap™ + 1 = 2F.

- If n = 2% = ap™ + 1 then x* € Irry(S,) if and only if u € L(n), by Lemma 2.5.

If @ > 1 then we let u be the partition of n defined as follows.

p=1+(@-1)p"17") e L(n) \ {(n), (1")}.
We observe that hyo(p) = (a — 1)p™ and hoq(p) = p™. Hence |HP" ()| = a by Lemma
2.2, and Cym () = (1). Therefore x* € Irrgy,y(S,) by Lemma 2.4.

On the other hand, if a = 1 then it is not difficult to see that the only characters
in Irr,(S,) labelled by hook partitions are the trivial and the sign character. More
precisely, we have that Irr,(S,) \ Lin(S,) = {(n — 2,2,1*7?) | 2 < = < n — 2}. Hence
Irrgo y (Sp) = Lin(Sy).

-Ifn=2"+1=ap™ and a > 1 then we define i - n as follows.

p=(1+(a—1)p"2,17"72).
It is routine to check that hiy(p) = 2%, hia(p) = (a — 1)p™ and that ho;(u) = p™. We
conclude that x* € Irrgs,1/(S,), by Lemma 2.4.
If @ = 1 then x* € Irry(S,,) if and only if u € £(n), by Lemma 2.5. It is now easy to

check that the only characters in Irry/(S,,) labelled by hook partitions are the trivial and
the sign character. Hence Irrys 1 (Sy,) = Lin(S,). O

Theorem 2.8 can be reformulated as follows.

Corollary 2.9. The graph T'(S,) is not complete if and only if n = 2¥ = p™ + 1 or
n =2+ 1=pm. In these cases the subgraphs of I"(S,) defined by m(|S,|) ~ {2} and by
7(|Sn|) ~ {p} are complete, and there is no edge between 2 and p.

Corollary 2.10. Let p # q be two primes and define 7w := {p,q}. Then |Irrn(A,)] > 1,
for alln = 5.

Proof. By Theorem 2.8 there exists A € P(n) \ {(n), (1")} such that x* € Irr/(S,), unless
gq=2andn =2 =p"+1orn=2"+1=pm In all these cases, let p € Irr(A,)
be an irreducible constituent of (x*)a,. Then (1) € {x*(1),x*(1)/2}. In particular
v € Irr(A,).
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Suppose now that ¢ = 2 and n =2 = p" + 1 orn = 28 + 1 = p™. We let u be the
partition of n defined as follows:

(281 41,12 ifn=pm =28 41,
/.1/ —
(281.2.12"7'2) if = pm 41 = 2k,

(Notice that s is well defined because n > 4.) In both cases we see that H2 (1) = &
and that |H2 ' ()| = 2. Therefore by Lemma 2.6 we deduce that vs(x*(1)) = 1. Since
w = p' we conclude that p(1) = x*(1)/2 is odd, for any irreducible constituent ¢ of
(X*)a,- Moreover, in both cases hy1(p) = p™ and

Con () = @ ifn=pr"=2"41,
PRV () ifn=pm4 1 =2k,

Hence Lemma 2.4 guarantees that x* € Irr,,(S,). We conclude that ¢ € Irr (A,). O

3. GrouPS OF LIE TYPE AND SPORADIC GROUPS

The aim of this section is to complete the proof of Theorem B. We begin with the case of
the sporadic groups and certain groups of Lie type that may be treated computationally.

Lemma 3.1. The simple groups G2(3), Go(4), Go(3), 2Fy(2), and *Es(2) and the 26
sporadic groups satisfy Theorem B.

Proof. This can be seen using GAP and the Character Table Library. 0J

Let G = G* be the group of fixed points of a connected reductive algebraic group G
defined over F, under a Steinberg map F. Here r is a prime and F, is an algebraic closure
of the finite field of cardinality r. We will call a group G of this form a finite reductive
group. Further, let G* = (G*)™* where (G*, F'*) is dual to (G, F).

The set of irreducible characters Irr(G) can be written as a disjoint union | |E(G, s)
of rational Lusztig series corresponding to G*-conjugacy classes of semisimple elements
s € G*. The characters in the series £(G, 1) are called unipotent characters, and there is
a bijection £(G,s) — E(Cex(s),1). Hence, characters of Irr(G) may be indexed by pairs
(s,1), where s € G* is a semisimple element, up to G*-conjugacy, and ¢ € Irr(Cgx(s)) is
a unipotent character.

Further, if x € Irr(G) is indexed by the pair (s,1), then the degrees of y and 1 are
related in the following way:

(3.1) xX(1) = |G*: Cex(s)](1)

(see [DM91, Remark 13.24]). Here for a natural number n and a prime p, we denote by
ny the largest integer m dividing n such that ged(m,p) = 1. Similarly, we will denote
the number p*»(™ by M.

Lemma 3.2. Let G = G be a finite reductive group defined over a field of characteristic
r. Let p # q be two primes and define m := {p,q}. Then |lrr,(G)| > 1.
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Proof. First, suppose p # r and ¢ # r. Then the degree of the Steinberg character Stg
is a power of r (see for example [DM91, Corollary 9.3]), and is therefore an element in
Irr,/(G). Then we may assume that p is the defining characteristic for G. That is, we
assume r = p.

Now, let @ be a Sylow g-subgroup of G* and let s € Z((Q) be nontrivial. Then s is
semisimple, since ¢ # p, and certainly @) < Cgx(s). Hence taking y to be indexed by
(5, Logu(s)), we have ¢ 1 x(1) and p{ x(1) from (3.1), so x € Irrp(G). O

Before we extend the above result to prove Theorem B in the case of simple groups of
Lie type, we note the following straightforward but useful lemma.

Lemma 3.3. Let G be a perfect group and let q be prime. Suppose that |Z(G)| is a power
of ¢ and that x € Irr(G) has degree prime to q. Then Z(G) is in the kernel of x.

Proof. Write Z = Z(G). The order o(A) of A € Irr(Z) lying under x must divide (1),
since 1 = det(y)z = AX. O

We are now ready to complete the proof of Theorem B.

Theorem 3.4. Let S be a finite simple group such that S = G/Z(G) for G = G a finite
reductive group of simply connected type defined over F,a for some prime r. Let p # q be
two primes and define w := {p,q}. Then |Irr(S)| > 1.

Proof. By Lemma 3.1, we may assume S is not one of the groups listed there, and by
Section 2, we may assume S is not isomorphic to an alternating group. We wish to show
that the character y constructed in the proof of Lemma 3.2 can be chosen to be trivial on
Z(G). This is satisfied for Stg, so we again assume r = p. By [NT13, Lemma 4.4(ii)], it
therefore suffices to show that the semisimple element s used in the proof of Lemma 3.2
can be chosen to be contained in (G*)'.

Here G is quasisimple and |Z(G)| = |G* : (G*)'|, where (G*)" denotes the commutator
subgroup of G*. Now, if ¢ 1 |Z(G)|, then Q < (G*)’, where @ is any Sylow g-subgroup
of G*, and the s chosen in Lemma 3.2 is in this case contained in (G*)’. Combining this
with Lemma 3.3, we may therefore assume that ¢ divides |Z(G)| but that |Z(G)| is not a
power of g. This leaves only the case that G is of type A.

Hence, for the remainder of the proof, we assume that G = SL{ (p*) with € € {+1}.
Here € = 1 means G = SL,(p”), e = —1 means G = SU,(p%), and |Z(G)| = ged(n, p* —¢€).
Recall from above that we may assume n is not a power of q. Writing G = GL: (p*), we
further have

G* =~ G/Z(G) and (G = GZ(G)/Z(G) = 8,

and we will make these identifications. L N

Let @ be a Sylow g-subgroup of G, so that @ := QZ(G)/Z(G) is a Sylow g-subgroup
of G*. Now, if Z(Q) n (G*) # 1, we can take s to be a nontrivial element of this
intersection, and we are done. So we may assume Z(Q) n (G*)' = 1, in which case
Z(Q) = Z(Q)(G*)/(G*) < G*/(G*)" and we see that |Z(Q)| divides ged(n, p* —€),, since
IG* : (G*)'| = ged(n, p® — €), and hence | Z(Q)| divides (p® — €), - ged(n, p® — €),.
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Now, writing n = ag + a1q + a2q® + - - - + a;¢* with 0 < a; < ¢ for the g-adic expansion
of n, we see by [We95] and [CF64] that @) can be chosen as the direct product

Q=JJer
=0

where @; is a Sylow g-subgroup of GL{;(p?), and this identification can be made by

embedding the matrices block-diagonally into G. Note that Z (Q;) contains the Sylow
g-subgroup of Z(GL{; (p")) = Cpa_.. Then |Z(Q)| > (p* — €)2, a contradiction, unless n is

of the form ¢' + ¢’ for some 0 < i < j. (Note that this includes the case n = 2¢* for some
i = 1, which can only occur if ¢ # 2.) Further, |Z(Q)| > (p* — €), - ged(n, p* — €), unless
(p* =€), | ng. Since n, = ¢*, this means we must have (p* —¢€), | ¢".

Now let ;1 be any nontrivial element in the Sylow g-subgroup of Cpa_., viewed inside
[Fja or ]F;QQ, corresponding to the cases € = 1 and —1, respectively. Consider the element
r = (plyi, Iy) € Z(GLL (p?)) x Z(GL; (p*)) < Z(Q). Then z is a non-central semisimple
element of G in Z(Q) and satisfies det(z) = 4" = 1, where the last equality follows from
the fact that (p® —€), | ¢". Hence x € G and therefore the element s := zZ(G) is a

nontrivial element of GZ(G)/Z(G) = (G*) in Z(Q), again a contradiction. O

Using the construction in the proof of Theorem 3.4, we find an analogue of Theorem
2.8 and Corollary 2.9 for the groups GL;, (r%).

Theorem 3.5. Let g # p be two prime numbers and write 7 := {p,q}. Let G = GL; (%)
for a prime r and € € {£1}. Then Irr(G) = Lin(G) if and only if there is some k = 0
such that (r,n) = (p,¢*) and q | (p® — €), up to reordering p and q.

Proof. Note that in this case, we may identify G =~ G*. First assume that Irr/ (G) =
Lin(G). Since the Steinberg character of G has degree r*"(™=1/2 it must be that 7 = p or
r = ¢. Without loss, we assume that » = p.

Let @ be a Sylow g-subgroup of G. Then any character of degree prime to ¢ can
be indexed by a pair (s,1), where s centralizes () and 1 has degree prime to ¢, using
(3.1). However, Lin(G) is comprised of characters indexed by pairs (z, 1) for z € Z(G)
(see [DM91, Proposition 13.30]), so it follows that there are no non-central semisimple
elements of G centralizing (). In particular, this shows that ¢ | (p* — €), since otherwise
q11Z(G)], so @ n Z(G) = 1, yielding non-central semisimple elements of G contained in
Z(Q). Further, arguing as in the proof of Proposition 3.4, we see n = ¢* for some integer
k, since otherwise |Z(Q)| = (p® — €); and there is some semisimple element in Z(Q) not
contained in Z(G).

Conversely, assume that 7 = p, n = ¢*, and ¢ | (p® — €). Since the centralizer of a
semisimple element s € G is a product of groups of the form GL{; (p*), [Ma07, Theorem
6.8] and [DM91, Proposition 13.20] yield that the only unipotent characters of C(s) with
degree prime to p are linear. It therefore suffices to show that if s € G is semisimple and
Q < Cq(s), then s € Z(G).

Let s € G be a semisimple element centralizing ). For ¢ > 0, let (); and T; denote a
Sylow g-subgroup of GL{;(p®) and Sy, respectively. Using [CF64] and [We95], we have
Q) = Qy is of the form Q1 T})_1.

aty
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Suppose ¢ is odd. If € = 1, then further Q@ = Q¢ 1T}, = C(pa_1), 1 T. In particular,

in this case, the normal subgroup Og:afl)q of @ may be viewed as the Sylow g-subgroup
of a maximally split torus, consisting of diagonal matrices. Since s must centralize this
subgroup, we have s is also a diagonal matrix. Further, with this identification, T} acts
via permuting the copies of Ca_1),, and hence the diagonal entries of a diagonal matrix.
Then since s must commute with this subgroup, we see that s is a scalar matrix, so is in
Z(G).

Now let € = —1, so G = GU(p*) < GLx(p**). Then since ¢ | (p* + 1), [We95, 4(ii)]
yields that @ is a Sylow g-subgroup of GL (p**). As ¢ | (p** —1), the previous paragraph
shows that s must be an element of Z(G).

Finally, assume ¢ = 2 and € € {£1}. Then by [CF64], we have N¢(Q) = @ % Cpo_g),,,
where the factor Cpe_o), is embedded naturally as the largest odd-order subgroup of
Z(G), which shows that an element of C () must be a member of Z(Q)Z(G). But since
x € Z(Q) must commute with the action of T}y, Z(Q) must be comprised of elements of
Q%k_l whose components are all the same. Further, these components must be in Z(Q)).
Considering the description in [CF64| of the Sylow 2-subgroups @ of GL5(p*), we see
that Z(Q) therefore consists of scalar matrices, and hence elements of Z(G). O

Corollary 3.6. Let g # p be two prime numbers and write m := {p,q}. Let G = GL (r®)
for a prime r and € € {£1}. Then I''(G) is not complete if and only if there is some k = 0
such that (r,n) = (p,q%) and q | (p* — €), up to reordering p and q. In this case, the
subgraphs of T'(G) defined by w(|G|) \ {p} and by n(|G|) \ {q} are complete, and there is
no edge between p and q.
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